
Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

107

Building on The Foundation

5 Building on The Foundation
5.1 Introduction

Having described, in Chapter 4, operators that are both necessary and sufficient for relational completeness,
the theory book builds on that foundation in Chapter 5 by describing some additional operators that have
been found useful and are included in Tutorial D. These include some additional relational operators
that are presented as shorthands—operators that can be defined in terms of ones already defined. For
example, in Section 5.1, composition and semijoin are both defined in terms of the primitive operators,
join and projection.

Here I show SQL counterparts for the Tutorial D expressions in Chapter 5, sometimes using longhands
perforce. As we shall see, quite a few of the SQL examples use operators that didn’t exist in SQL until 1999
or later. Moreover, these late additions are not shorthands—before they arrived, some of the examples
in Chapter 5 of the theory book could not be expressed at all in SQL.

In the theory book at this point we needed a couple of additional relvars in our example database,
COURSE and EXAM_MARK, along with the existing IS_CALLED and IS_ENROLLED_ON. They are
shown again here, now as SQL tables, in Figure 5.1.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

SQL: A Comparative Survey

108

Building on The Foundation

COURSE EXAM_MARK

CourseId Title StudentId CourseId Mark

C1 Database S1 C1 85

C2 HCI S1 C2 49

C3 Op systems S1 C3 85

C4 Programming S2 C1 49

S3 C3 66

S4 C1 93

Figure 5.1: Current values of base tables COURSE and EXAM_MARK

The predicate for COURSE is “Course CourseId is entitled Title.” The predicate for EXAM_MARK is
“Student StudentId sat the exam for course CourseId and scored Mark marks for that exam.” The SQL
definitions for these tables are

CREATE TABLE COURSE (CourseId CID,

Title VARCHAR(100) NOT NULL,

PRIMARY KEY (CourseId)

) ;

CREATE TABLE EXAM_MARK (StudentId SID,

CourseId CID,

Mark INTEGER NOT NULL,

PRIMARY KEY (StudentId, CourseId)

) ;

(SID and CID are now assumed to be SQL domain names, defined on type VARCHAR(5). As not
many SQL implementations support domains, in practice you would be more likely to see some CHAR
type being used here. Also, the table definitions might include some additional constraint definitions,
but those are dealt with in Chapter 6.)

5.2 Semijoin and Composition

For semijoin Tutorial D has the dyadic relational operator MATCHING, defined thus:

r1 MATCHING r2, where r1 and r2 are relations such that r1 JOIN r2 is defined, is equivalent to
(r1 JOIN r2) { r1-attrs }

where r1-attrs is a commalist containing all and only the attribute names of r1.

and the example

COURSE MATCHING EXAM_MARK

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

109

Building on The Foundation

is given as a relational expression for the predicate, “There exist a student StudentId and a mark Mark
such that StudentId sat the exam and scored Mark marks for course CourseId and CourseId is entitled
Title” (which could be abbreviated to “At least one student sat the exam for Course CourseId, entitled
Title”). The resulting relation consists of just those tuples in COURSE that have at least one matching
tuple in EXAM_MARK.

In SQL semijoins usually have to be done in longhand and there are several ways of doing them. The
simplest way is to use the comparison operator IN, SQL’s counterpart of Tutorial D’s ∈ (which Rel
implements as IN):

SELECT * FROM COURSE

WHERE CourseId IN (SELECT CourseId From EXAM_MARK)

or, equivalently, the quantified comparison operator, =ANY:

SELECT * FROM COURSE

WHERE CourseId =ANY (SELECT CourseId From EXAM_MARK)

The result in either case is the table shown in Figure 5.2. Note in passing that the table operand of IN
or = ANY here contains three appearances of the row for course C1, and thus does not represent a
relation. That could be fixed by specifying DISTINCT, of course, but here the redundant duplicates
are obviously not a problem. Note the need to write the column name CourseId twice. Perhaps this
burden is compensated for to some extent by the improved clarity.

CourseId Title

C1 Database

C2 HCI

C3 Op systems

Figure 5.2: Semijoin of COURSE with EXAM_MARK

Translating the SQL longhand back into Tutorial D, we get

COURSE WHERE TUPLE{CourseId CourseId} ∈ EXAM_MARK {CourseId}

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

110

Building on The Foundation

In spite of appearances, TUPLE{CourseId CourseId} is a reasonable translation of SQL’s plain
CourseId because in standard SQL the first operand of IN is in fact a row. A row is denoted in general
by a commalist of expressions enclosed in parentheses, optionally preceded by the key word ROW, but the
parentheses can be omitted when the row consists of just one field, as explained in Chapter 2, Section
2.9 Table Literals. However, many SQL implementations fail to support rows with more than one field
as the first operand of IN, in which case a longer longhand is needed. For example, to obtain enrolments
for which an exam mark is available (IS_ENROLLED_ON MATCHING EXAM_MARK in Tutorial D),
we might expect to be able to write

SELECT * FROM IS_ENROLLED_ON

WHERE (CourseId, StudentId) IN

(SELECT CourseId, StudentId From EXAM_MARK)

but instead we are forced to write, in such an implementation,

SELECT * FROM IS_ENROLLED_ON A

WHERE EXISTS (SELECT * FROM EXAM_MARK B

WHERE A.CourseId = B.CourseId

AND A.StudentId = B.StudentId)

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

SQL: A Comparative Survey

111

Building on The Foundation

Also, in the formulation using IN, note carefully the need to pay attention to order in which column
names are written—the correspondence between the fields of the row and the columns of the table is by
position, not name, and in any case the fields of the row do not necessarily inherit the names CourseId
and StudentId, as we shall see in many more examples in this chapter.

Alternatively, by translating the definition given for semijoin into SQL, we could write

SELECT DISTINCT A.*

FROM IS_ENROLLED_ON AS A NATURAL JOIN EXAM_MARK AS B

and now the need to mention column names has gone away.

Finally, in the special case where all the columns of the first operand are common columns, then we
can use SQL’s INTERSECT operator. As this is indeed the case with the example at hand, we can write

SELECT * FROM IS_ENROLLED_ON

INTERSECT CORRESPONDING

SELECT StudentId, CourseId FROM EXAM_MARK

The syntax for INTERSECT exactly parallels that for UNION and EXCEPT. The key words DISTINCT,
ALL, and CORRESPONDING have exactly the same significance as in those operators, and DISTINCT
remains the default option. When CORRESPONDING is not given, columns are paired by ordinal
position, as in UNION.

t1 INTERSECT DISTINCT t2 returns the table consisting of a single appearance of each row that
appears in both t1 and t2. t1 INTERSECT ALL t2 returns the table consisting of m appearances
of each row r that appears in both t1 and t2, where m is the smaller of its number of appearances in
t1 and its number of appearances in t2.

Historical Notes

The SEQUEL paper uses the mathematical symbol “∩” in place of SQL’s INTERSECT. However, like
EXCEPT, INTERSECT was missing from original SQL and didn’t appear in the standard until 1992. It
remains an optional conformance feature. The IN operator was in original SQL but had no counterpart
in SEQUEL. Standard SQL allows (CourseId, StudentId) =ANY in place of (CourseId,
StudentId) IN and defines the two formulations to be equivalent. SEQUEL’s support for such
“quantified comparisons” was limited to rows and tables of degree one. Also, SEQUEL did not use a key
word such as ANY (standard SQL admits ANY or SOME, synonymously) but rather assumed existential
quantification when the second operand of a comparison operator was a table and ALL was not specified.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

112

Building on The Foundation

Turning now to the operator known as composition, the theory book gives the example

COURSE COMPOSE EXAM_MARK

as representing the predicate “Student StudentId scored Mark marks in the exam for a course entitled
Title.” The corresponding relation must have attributes StudentId, Mark, and Title. The first two
would clearly be derived from EXAM_MARK, the third from COURSE.

The result is shown in Figure 5.3. As you can see, it is equivalent to the join of COURSE and EXAM_MARK,
projected over all but the common attribute, CourseId.

Title StudentId Mark

Database S1 85

HCI S1 49

Op systems S1 85

Database S2 49

Op Systems S3 66

Database S4 93

Figure 5.3: Composition of COURSE and EXAM_MARK

In SQL, as the result contains data from both operand tables, this time we really do have to specify both
tables in the FROM clause—neither of the operators IN and EXISTS is of any use here.

SELECT DISTINCT Title, StudentId, Mark

FROM IS_ENROLLED_ON NATURAL JOIN EXAM_MARK

Now, it is worth repeating here the theory book’s justification for including COMPOSE in Tutorial D.

In case you are wondering if COMPOSE really is useful enough to be worth including in a computer language,
and therefore to be worthy of inclusion in textbooks like this one, an important part of the motivation for its
inclusion in Tutorial D was a desire to illustrate the extensibility of a well-designed language. Adding new
operators increases a language’s complexity, to be sure, but that added complexity can be compensated
for if the new operators are not only useful but can be easily defined and taught in terms of what the user
already knows.

We can note in passing that it would be easy to extend SQL to support semijoin and composition
explicitly—just allow words such as MATCHING and COMPOSE to appear where NATURAL JOIN is
currently permitted!

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

113

Building on The Foundation

Effects of NULL

Observations similar to those given in connection with UNION and EXCEPT in Chapter 4, Sections 4.9
and 4.10, apply here too. For example, consider the following two expressions:

SELECT x FROM T1

INTERSECT

SELECT x FROM T2

SELECT x FROM T1

WHERE x IN

(SELECT x FROM T2)

If row r appears in both T1 and T2 and satisfies the condition x IS NULL, then r appears in the result
in the first case, using INTERSECT, but not in the second, because the condition in the WHERE clause
evaluates to UNKNOWN for that row.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

SQL: A Comparative Survey

114

Building on The Foundation

5.3 Aggregate Operators

SQL supports all of the aggregate operators mentioned in the theory book and many more besides. The
syntax, however, involves an unusual trick that SQL calls a scalar subquery. A scalar subquery is a table
expression that satisfies all of the following conditions:

• It is enclosed in parentheses.

• It appears where a scalar expression is expected.

• The result of the enclosed table expression has exactly one column and at most one row.

The result of a scalar subquery is then either the single column value appearing in that single row or,
when there is no row, NULL. Examples 5.1 to 5.4 are the SQL counterparts of those examples in the
theory book. In each case the required aggregation is specified in the SELECT clause of a scalar subquery
and the table operand is specified in the clause(s) following that SELECT clause.

Example 5.1: Counting the rows in EXAM_MARK

(SELECT COUNT(*) FROM EXAM_MARK)

The table expression inside the parentheses in Example 5.1 is analogous to an invocation of SUMMARIZE
in Tutorial D that specifies BY { }, as in

SUMMARIZE EXAM_MARK BY { } : { X := COUNT() }

and in fact standard SQL allows GROUP BY () to be added immediately before the closing parenthesis:

(SELECT COUNT(*) FROM EXAM_MARK GROUP BY ())

I could have added AS X to the SELECT clause, to make the analogy exact, but that would have been
pointless because of course the column name disappears in the process of converting the table to a
number. Similar comments apply to Examples 5.2, 5.3, and 5.4. (SQL’s GROUP BY construct is described
in Section 5.6.)

Remember that the SQL Example 5.1 denotes a number, as opposed to a table, only when the context is
appropriate—for example, when it appears on the right-hand side of an assignment to an integer variable,
or as an operand in a comparison of two integers. When it appears as an element of a FROM clause, for
example, or as an operand of UNION, then the enclosing parentheses do not affect the semantics and it
denotes a table with one unnamed column.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

115

Building on The Foundation

COUNT(*) denotes the cardinality of the operand table. If the * is replaced by some expression x, then
COUNT(x) denotes the number of rows that satisfy the condition x IS NOT NULL. For obvious
reasons, that particular aspect of aggregation in SQL has no counterpart in Tutorial D.

Example 5.2: Counting the students who have scored more than 50 in some exam

(SELECT COUNT(*) FROM

 (SELECT DISTINCT StudentId

 FROM EXAM_MARK

 WHERE Mark > 50) AS T)

Example 5.2 is a direct translation of the corresponding example in the theory book but it can be
abbreviated—and is much more likely to be written—as

(SELECT COUNT (DISTINCT StudentId)

 FROM EXAM_MARK

 WHERE Mark > 50)

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

SQL: A Comparative Survey

116

Building on The Foundation

Historical Notes

The abbreviated formulation for Example 5.2 has been in SQL from the start. The longer form became
available in SQL:1992, when support for “derived tables in the FROM clause” was introduced. Note that
the longer form is needed when SELECT DISTINCT specifies more than one expression.

The use of parentheses in the GROUP BY clause, and support for GROUP BY () in particular, were
introduced in SQL:1999. Previously, a GROUP BY clause had been required to specify at least one column.

Example 5.3 illustrates the use of SUM in SQL

Example 5.3: Adding up all the marks obtained by student S1

(SELECT SUM(Mark) FROM EXAM_MARK WHERE StudentId = 'S1')

Effect of NULL

As with COUNT, the evaluation of SUM(x) ignores rows that satisfy the condition x IS NULL, this
being a general rule applying to all aggregations in SQL. However, this doesn’t mean that SUM(x) is
guaranteed never to result in NULL, for NULL is the result whenever the operand table is empty or x IS
NULL is true for every row. Thus, Example 5.3 results in NULL whenever student S1 has taken no exams.

Note that SUM(x) + SUM(y) is not in general equivalent to SUM(x + y), because x + y evaluates to
NULL when either x evaluates to NULL or y does. Thus, some values that are included in the summing
of x and the summing of y might be omitted in the summing of x + y.

Example 5.4: MAX and MIN

(SELECT MAX(Mark) FROM EXAM_MARK WHERE StudentId = 'S1')

(SELECT MIN(Mark) FROM EXAM_MARK WHERE StudentId = 'S1')

Example 5.4 needs no further explanation. SQL also has AVG for averages. Its counterparts of Tutorial D’s
aggregate AND and OR are spelled, respectively, EVERY and either SOME or ANY, but all of these must be
used with care because of the consequences of the aforementioned general rule concerning the treatment
of NULL. For example, if the condition c evaluates to UNKNOWN for every row of table t, or t is empty,
then (SELECT EVERY(c) FROM t) evaluates to UNKNOWN, whereas when t is empty it really
ought to evaluate to TRUE. (I hesitate to hazard a guess as to what it should “really” evaluate to when
t is nonempty but c evaluates to UNKNOWN in every row.)

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

117

Building on The Foundation

At this point the theory book gives Example 5.5 (not repeated here) as an unpleasant way of computing
the number of students who sat each exam and shows Figure 5.4, repeated here, as a preferred way of
presenting the result of such a computation.

CourseId n

C1 3

C2 1

C3 1

C4 0

Figure 5.4: How many sat each exam

The example is used as motivation for Tutorial D’s SUMMARIZE operator but the demonstration that
SUMMARIZE is indeed a shorthand is rather elaborate, occupying the next three sections of the theory
book. The first of those three, Section 5.4, Relations within a Relation, describes attributes whose values
are relations and shows how such attributes can be obtained using relational extension. Section 5.5, Using
Aggregate Operators with Nested Relations, then shows how results such as that shown in Figure 5.4
can be obtained using relational operators described in Chapter 4, and then SUMMARIZE is introduced
in Section 5.6 as a shorthand for obtaining those same results.

As we shall eventually see, SQL has a fairly direct counterpart of SUMMARIZE BY, using aggregation in
combination with a GROUP BY clause. SQL textbooks do not normally teach aggregation and GROUP
BY along the theory book’s lines for teaching SUMMARIZE, but I do so here to maintain the parallel
structure and also to show how the intermediate results of sections 5.4 and 5.5 can be obtained in modern
SQL. The names of these sections are SQL paraphrases of their counterparts in the theory book.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

118

Building on The Foundation

5.4 Tables within a Table

Figure 5.5 here is an exact copy of the one in the theory book and as before it is just an alternative way
of representing some of the information conveyed by the tables in Figure 5.1 (but not a recommended
database design for that information).

Figure 5.5: Tables within a table

For each course, it shows the exam mark obtained by each student who took the exam for that course.
Example 5.6 shows how to obtain this table—let’s call it C_ER again—in SQL.

Example 5.6: Obtaining C_ER from COURSE and EXAM_MARK

SELECT CourseId,

CAST (

TABLE (SELECT DISTINCT StudentId, Mark

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId)

AS ROW (StudentId SID, Mark INTEGER) MULTISET)

AS ExamResult

FROM COURSE AS C

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

119

Building on The Foundation

Explanation 5.6

• The SELECT clause operates on each row of the result of the FROM clause—i.e., on each
row of the COURSE table, deriving two columns, CourseId and ExamResult.

• CourseId is self-explanatory, merely carrying forward the column values from the column
of that name in COURSE.

• TABLE (SELECT DISTINCT StudentId, Mark FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId) denotes a multiset whose elements are
rows, obtained by taking the StudentId and Mark values from those rows of EXAM_
MARK that match the current row of COURSE on CourseId. Note very carefully, however,
that this multiset does not necessarily inherit the column names, StudentId and Mark,
from the table that is the operand to the invocation of TABLE. The SQL standard allows
the column names to be “implementation-dependent” (i.e., undefined) so long as no two
columns have the same name. An implementation that nevertheless carried forward the
unique names StudentId and Mark would be both sensible and conforming, and would
obviate the need for the CAST invocation explained in the next bullet.

The same multiset would result if the word DISTINCT had been omitted, thanks to the WHERE
condition, but I include it because the example in the theory book uses COMPOSE, which is
defined as a projection of a join, and SQL’s counterpart of projection uses SELECT DISTINCT.

• CAST (t AS ROW (StudentId SID, Mark INTEGER) MULTISET),
where t is the above TABLE expression, addresses the aforementioned possible problem
by assigning the required column names. Note that we need to know and write down the
declared types of those columns as well as their names. The “type conversion” operator
CAST is described in Chapter 2, Explanation 2.1a. Here it is being used to convert a value of
some incompletely defined multiset type to one whose multiset type is explicitly defined.

• AS ExamResult then gives the resulting column the name ExamResult. Note that
here the name comes after AS and the expression defining it comes before, in the same style
as the use of AS to define the range variables C and EM in the example.

The values for columns such as ExamResult in this example have sometimes been referred to informally
as nested tables, being “tables within a table”, so to speak. Unfortunately, however, they are not actually
tables, but rather multisets of rows. Because of that fact, a column such as ExamResult cannot appear as
an element in a FROM clause, so we cannot use it in the way it is used in Example 5.7 in the theory book.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

120

Building on The Foundation

Historical Notes

The TABLE operator didn’t appear in SQL until SQL:2003 and it remains an optional conformance
feature. See Chapter 2, Section 2.6 What Is a Type? and Section 2.8, The Type of a Table.

It is not surprising that support for nested tables was absent from the early SQL implementations. Codd’s
first normal form (1NF) had been widely understood to be a required property of all relations, not just
database relvars, and relation-valued attributes were proscribed under that normal form. The proscription
came into question during the 1980s, when the term “not first normal form” was coined, abbreviated to
NFNF and thence, somewhat jocularly, to NF2.

CAST first appeared in SQL:1992.

5.5 Using Aggregation on Nested Tables

Example 5.7 is the most direct translation of its counterpart in the theory book that can be obtained in
SQL but it is so over-elaborate that no SQL practitioner would consider using it. It uses the aggregate
operator COUNT on the table values for column ExamResult to obtain the number of students who
sat each exam. Unfortunately, as already noted, we cannot operate directly on ExamResult as a FROM
clause element. Instead, we need to use an artifice that is specially devised for the sake of this example.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

SQL: A Comparative Survey

121

Building on The Foundation

Example 5.7: How many students sat each exam (not a recommended solution!)

WITH C_ER AS (

 SELECT CourseId,

 CAST (

 TABLE (SELECT DISTINCT StudentId, Mark

 FROM EXAM_MARK AS EM

 WHERE EM.CourseId = C.CourseId)

 AS ROW (StudentId SID, Mark INTEGER) MULTISET)

 AS ExamResult

 FROM COURSE AS C)

SELECT CourseId, (SELECT COUNT(*)

 FROM TABLE(ER(ExamResult)) AS t) AS n

FROM C_ER

Explanation 5.7

• The WITH clause, occupying the first nine lines of the example, illustrates SQL’s counterpart
of Tutorial D’s construct of the same name. It assigns the name, C_ER, to the result of
Example 5.6. That name, C_ER, is then used in the FROM clause of the expression that
follows the WITH clause. Note that here the name comes before AS and the expression
defining it comes after. This is consistent with the analogous use of AS in CREATE VIEW
statements, SQL’s counterparts of Tutorial D’s virtual relvar definitions.

• TABLE(ER(ExamResult)) seems to be the only way of having a multiset valued
column operated on as an element of a FROM clause—a simple column name is not allowed
to appear here. TABLE(ExamResult) can’t be used either, because when an invocation
of TABLE appears as a FROM clause element, its operand is required to be, specifically, an
invocation of a user-defined function. Here I am assuming that ER is defined as follows:

CREATE FUNCTION ER

(SM ROW (StudentId SID, Mark INTEGER) MULTISET)

RETURNS TABLE (StudentId SID, Mark INTEGER)

RETURN SM ;

The type name TABLE (StudentId SID, Mark INTEGER) is actually just a
synonym for ROW (StudentId SID, Mark INTEGER) MULTISET). The
misleading synonym is available only in a RETURNS clause and not as a parameter type, for
example. So ER is actually a no-op, returning its input.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

122

Building on The Foundation

• (SELECT COUNT(*) FROM TABLE(ER(ExamResult)) AS t) is a scalar
subquery, yielding the cardinality of the multiset of rows that is the value of the column
ExamResult in the current row of C_ER. Because we are using the expression to denote a
scalar value rather than a table, naming the column would be pointless (apart, perhaps, from
injecting a somewhat sarcastic element of purism). As COUNT(*) doesn’t use a column
name, Example 5.7 is valid even if we omit the invocation of CAST to assign column names.

• AS n then gives the resulting column the name n. Note that here the name comes after AS
and the expression defining it comes before, in the same style as the use of AS to define the
range variables C and EM in the example.

So long as CAST is used as shown, we could obtain the total marks for each exam in similar fashion,
using SUM(Mark) AS TotalMarks. However, this gives NULL, instead of zero, for the courses
whose exams nobody sat. That problem can be addressed by using COALESCE, as shown in Example 5.7a.

Example 5.7a: Give the total of marks for each exam (still not a recommended solution)

WITH C_ER AS (

 SELECT CourseId,

 CAST (

 TABLE (SELECT DISTINCT StudentId, Mark

 FROM EXAM_MARK AS EM

 WHERE EM.CourseId = C.CourseId)

 AS ROW (StudentId SID, Mark INTEGER) MULTISET)

 AS ExamResult

 FROM COURSE AS C)

SELECT CourseId, COALESCE (

 (SELECT SUM(Mark)

 FROM TABLE(ER(ExamResult)) AS t), 0)

AS n

FROM C_ER

Explanation 5.7a

• COALESCE((SELECT SUM(Mark) FROM TABLE(ER(ExamResult)) AS

t),0) yields the value of the scalar subquery whenever ExamResult is nonempty,
otherwise zero. SQL’s COALESCE is an n-adic operator that takes a commalist of expressions
of the same declared type and yields the result of the first of those expressions, in the order
in which they are written, that does not evaluate to NULL. When there is no such operand,
it yields NULL anyway, of course.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

123

Building on The Foundation

Notice that SQL does not follow the rule given in the theory book whereby aggregation over the empty
relation yields the identity value for the basis operator (when such a value exists), in this case addition,
whose identity value is zero.

Now, as I remarked already, examples 5.7 and 5.7a are not recommended ways to obtain the required
result. Example 5.7b shows how 5.7a can be condensed into a much more concise solution.

Example 5.7b: Give the total of marks for each exam (simplified solution)

SELECT CourseId,

COALESCE ((SELECT SUM(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId),

 0) AS TotalMark

FROM COURSE AS C

Explanation 5.7b

• The first operand to the invocation of COALESCE is a scalar subquery similar to those
shown in Section 5.3, Aggregate Operators. Recall the need to enclose the SELECT
expression in parentheses, without which it would denote a table rather than a number.

Historical Notes

The SQL standard’s WITH clause first appeared in SQL:1999. It remains an optional conformance feature.
Moreover, even if an implementation does support it, it is further optional as to whether it is permitted
to appear in a subquery.

Scalar subqueries have been in SQL from the beginning but were originally allowed to appear only as
the second operand of a comparison, and thus could not appear in the SELECT clause. Moreover, they
were subject to various arbitrary restrictions, such as not being allowed to contain UNION, GROUP BY,
or HAVING. The restrictions were lifted in SQL:1992 but implementations that retained them were still
able to claim the minimum level of conformance until the appearance of SQL:1999.

The COALESCE operator was added to the language in SQL:1992. It ceased to be optional in SQL:1999.

If we need the average mark for each exam we will have to avoid zero-divides by excluding those which
no students sat. As in the theory book we can do that by homing in on just those CourseId values that
appear in EXAM_MARK, as shown in Example 5.8, the differences from Example 5.7b being shown in bold.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

124

Building on The Foundation

Example 5.8: Average mark per exam

SELECT CourseId,

(SELECT AVG(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId) AS AvgMark

FROM EXAM_MARK AS C

Now, the theory book goes on from here to describe two varieties of the relational summarization
operator—SUMMARIZE PER and SUMMARIZE BY in Tutorial D—providing useful shorthands for
expressions like Example 5.7. SQL has no such operators but it does provide a useful shorthand for cases
that in Tutorial D can be formulated using SUMMARIZE BY, as we shall see in the next section. As
with SUMMARIZE, this shorthand also allows multiple aggregations to be specified on the same table
without repeating the expression denoting that table. Example 5.8a shows how this repetition problem
arises if we followed the style of Example 5.8 to obtain both the average mark and the total, this time
ignoring exams that nobody sat.

Example 5.8a: Average and total mark per exam (not a recommended solution!)

SELECT CourseId,

(SELECT AVG(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId) AS AvgMark,

(SELECT SUM(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId) AS TotalMark

FROM EXAM_MARK AS C

5.6 Summarization in SQL

Example 5.9 in the theory book uses Tutorial D’s SUMMARIZE PER to give the same result as Example
5.7. Because SQL has no direct counterpart of SUMMARIZE PER, here I need to go straight to Example
5.11 to show how SUMMARIZE BY invocations can be simulated in SQL. Then I can show how Example
5.9 could be translated in SQL. Example 5.11 introduces us to SQL’s GROUP BY clause, this being its
direct counterpart of Tutorial D’s BY specification in SUMMARIZE BY.

Example 5.11: Average mark for each exam, using GROUP BY (recommended solution)

SELECT CourseId, AVG(mark) AS AvgMark

FROM EXAM_MARK

GROUP BY CourseId

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

125

Building on The Foundation

The GROUP BY clause is not to be confused with Tutorial D’s GROUP operator. Actually, GROUP BY
CourseId can be considered to have the same effect as GROUP{ALL BUT CourseId} in Tutorial D,
in which case AVG(Mark) then operates on the nested tables produced by the GROUP BY clause. However,
the SQL standard and most SQL textbooks do not define GROUP BY in such terms. Rather, they introduce
the notion of partitioning the body of a table into groups and refer to such a partitioned table as a grouped
table. When a SELECT expression includes a GROUP BY clause, each SELECT clause element must
specify a column that is functionally dependent on the GROUP BY columns, thus reducing each group to
a single row. (Functional dependence is taught in Chapter 7 of the theory book. It should be clear to you
that the FD {CourseId} → { CourseId, AvgMark } always holds in the result of Example 5.11.)

We can return to the theory book’s Example 5.9 now because we can use GROUP BY to obtain part of
the required result and an outer join (see Chapter 4, Example 4.1e) in conjunction with COALESCE to
complete it. The example as given could be addressed in similar fashion to Example 5.7 but the method
shown in Example 5.9 is likely to be preferred when more than one aggregation is to be specified on
the same table.

Example 5.9: How many students sat each exam,

using GROUP BY, NATURAL LEFT JOIN, and COALESCE

SELECT CourseId, COALESCE(n, 0) AS n

FROM COURSE NATURAL LEFT JOIN

(SELECT CourseId, COUNT(*) AS n

FROM EXAM_MARK

GROUP BY CourseId) AS T

Explanation 5.9

• NATURAL JOIN is described in Chapter 4, Section 4.1. Note, however, that the use of
LEFT makes this an outer join, whereas Codd’s term natural join referred to the “inner”
variety only.

• LEFT specifies that each unmatched row in the first join operand, COURSE, is to be
extended with NULL for the column n.

• COALESCE (n, 0) AS n effectively replaces those appearances of NULL by the correct
value, 0.

(I give no counterpart for Example 5.10 in the theory book because it merely shows how Tutorial D’s
SUMMARIZE BY is just a shorthand for certain special cases of SUMMARIZE PER.)

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

126

Building on The Foundation

Historical Notes

In the final section of Chapter 4, Concluding Remarks, I mentioned a claim that “early versions” of
SQL were not relationally complete, for reasons beyond the “small” matter of failing to recognize the
existence of relations of degree zero (or tables with no columns). I can now give the rationale for that
claim. Example 5.9 uses a SELECT expression in its FROM clause, which was not supported by the
international standard until SQL:1992 appeared. Without such support it is not always possible for the
table resulting from such an expression to be joined with another table. In particular, it is not possible
when a join is required of two tables that are both obtained by use of SELECT … FROM … GROUP BY.

5.7 Grouping and Ungrouping in SQL

Example 5.6a is derived from Example 5.6 by specifying EXAM_MARK in place of COURSE in the main
FROM clause.

Example 5.6a: Obtaining C_ER2 from EXAM_MARK

SELECT CourseId,

 CAST (

TABLE (SELECT DISTINCT StudentId, Mark

FROM EXAM_MARK AS EM2

WHERE EM1.CourseId = EM2.CourseId)

AS ROW (StudentId SID, Mark INTEGER) MULTISET)

AS ExamResult

FROM EXAM_MARK AS EM

Figure 5.4 shows the result, named C_ER2 for convenience. It differs from the C_ER of Figure 5.3 only
in the absence of a row for course C4, whose exam nobody sat.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

127

Building on The Foundation

Figure 5.4: Intermediate result C_ER2 from Example 5.6a

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

SQL: A Comparative Survey

128

Building on The Foundation

The theory book gives Example 5.12 to illustrate use of the operator GROUP as a shorthand for obtaining
such results. SQL has no direct counterpart of GROUP but Example 5.12 shows how to use GROUP BY
to obtain an alternative formulation to produce C_ER2 that is more concise than Example 5.8a.

Example 5.12: Using GROUP BY and COLLECT to obtain C_ER2

SELECT CourseId,

 CAST (

COLLECT(ROW(StudentId, Mark))

AS ROW (StudentId SID, Mark INTEGER) MULTISET)

 AS ExamResult

FROM EXAM_MARK

GROUP BY CourseId

Explanation 5.12

• ROW(StudentId, Mark) forms the row consisting of the StudentId and Mark values of
the current row of EXAM_MARK, in that order. The two fields of this row are unnamed.

• COLLECT(ROW(StudentId, Mark)) collects together as a multiset all of those
rows that are derived EXAM_MARK rows having the same CourseId value. In fact it is
shorthand for FUSION(ROW(StudentId, Mark) MULTISET), where FUSION is
SQL’s nearest counterpart of Tutorial D’s aggregate UNION. For each value of its operand,
COLLECT derives the multiset containing just that value, and returns the FUSION (see next
bullet) of all the multisets thus formed.

• FUSION is aggregate multiset union (UNION ALL), not UNION per se. In general the same
value (in our example, a row) might appear more than once in the result of a COLLECT
invocation. Fortunately, that won’t happen here because the same StudentId, Mark
combination cannot appear along with the same CourseId in more than one row of
EXAM_MARK, so DISTINCT could be omitted.

Tutorial D’s aggregate operator UNION is not mentioned in the theory book. It is used for
taking the union of the relations appearing as values of a specified attribute in the relation
operand of that aggregate operator.

• CAST (m AS ROW (StudentId SID, Mark INTEGER) MULTISET),
where m is the above COLLECT expression, names the columns of the nested table,
ExamResult. Note the need to spell out the entire declared type of ExamResult,
even though it differs from that of the COLLECT expression only in the names of the
two columns.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

129

Building on The Foundation

By the way, the following table expression:

SELECT *

FROM (FUSION (TABLE (VALUES (StudentId, Mark))))

 AS T(StudentId, Mark)

denotes the same value as the given CAST expression but unfortunately it cannot be used as an
alternative for the very reason that it is a table expression—table expressions are not permitted
as SELECT clause elements. We could enclose it in parentheses following the word TABLE,
but then, as I have already explained, we have no guarantee that the column names would be
propagated to the result and so we might have to use CAST again after all!

That table expression is rather convoluted. You might prefer not to be given an explanation
for it but here it is anyway:

(StudentId, Mark) denotes the row consisting of the StudentId value followed by
the Mark value. Putting VALUES in front of it makes it into table expression denoting the table
containing just that row. Putting TABLE in front of that makes it into a multiset expression,
as required by FUSION. Although table expressions are not permitted as SELECT clause
elements, multiset expressions are permitted as FROM clause elements, allowing us to enclose
the FUSION invocation in SELECT * FROM (…) AS T(StudentId, Mark) to
make sure we have the required column names.

In Tutorial D, the inverse operator of GROUP is UNGROUP. SQL has an operator, UNNEST, that can be
used for similar purposes, but its method of invocation is somewhat peculiar, as Example 5.13 shows,
and it can be used only to specify a FROM clause element.

Example 5.13: Inverse of Example 5.12, using UNNEST

SELECT DISTINCT * FROM C_ER2, UNNEST (ExamResult) AS M

The name C_ER2 could be defined using a WITH clause, as in Example 5.7a. Notice how the second
element of the FROM clause has to be reevaluated for each row of C_ER2, whereas each FROM clause
element is normally evaluated just once because its value does not vary from row to row of previous
elements. The column reference ExamResult is a reference to the column of that name in C_ER2
and is permitted only because C_ER2 is specified before UNNEST (ExamResult) in the FROM
clause—a switching of these two FROM clause elements would result in a syntax error.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

130

Building on The Foundation

Effect of NULL

In Example 5.13, ExamResult is a column of type ROW (StudentId SID, Mark INTEGER)
MULTISET). In C_ER2 NULL cannot appear in place of a value for that column, but in general NULL
can appear in place of a value for a column of some multiset type. So we need to know what happens
when NULL is given as the argument to an invocation of UNNEST. At the time of writing (in 2012), the
SQL standard appears to be silent on that issue. One would expect it to give rise to an exception condition.

Note also that NULL might in general appear as an element of a multiset whose element type is a ROW
type, though again this cannot arise in C_ER2, assuming that C_ER2 is derived as shown in Example 5.12.

Historical Note

UNNEST first appeared in SQL:1999, though in that edition it was used only with arrays, not with multisets.
COLLECT and FUSION first appeared in SQL:2003, along with INTERSECTION, for computing an
aggregate intersection of multisets (and not to be confused with the table operator INTERSECT). They
are all optional conformance features.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

SQL: A Comparative Survey

131

Building on The Foundation

Now, the theory book at this point observes that the cardinality of the result of Example 5.13 is equal to
the sum of the cardinalities of the ExamResult values in C_ER2. It then poses the following question
as an exercise for the reader: Is it always the case that the cardinality of an ungrouping is equal to the
sum of the cardinalities of the relations the operand relation is being ungrouped on? Although I didn’t
need to include DISTINCT in this example, the fact that I decided to do so anyway gives you a broad
hint as to the correct answer to that question. Can you think of an example where DISTINCT would
be required to avoid duplicates?

5.8 Wrapping and unwrapping in SQL

The theory book describes operators WRAP and UNWRAP in connection with attributes whose declared
types are tuple types. Example 5.14 in that book shows how extension and projection can be used to
replace a given set of attribute values in each tuple of a given relation by a single tuple consisting of
those values; the next example then illustrates the use of WRAP as a convenient shorthand for the same
purpose (on the admittedly rare occasions on which it is likely to arise in practice).

The effect of Example 5.14 can be obtained in SQL but note that one needs to write down not only the names
of the columns being wrapped but also the names and declared types of the columns not being wrapped.

Example 5.14: Collecting column values together

SELECT Name, Phone, Email,

CAST (ROW (House, Street, City, Zip) AS

ROW (House VARCHAR(100), Street VARCHAR(100),

City VARCHAR(100), Zip VARCHAR(10)))

AS Address

FROM CONTACT_INFO

As before, we need to use CAST because the result of an invocation of ROW has unnamed fields. The
example assumes, therefore, a definition such as the following for the base table CONTACT_INFO:

CREATE TABLE CONTACT_INFO (Name VARCHAR(100) PRIMARY KEY,

Phone VARCHAR(15) NOT NULL,

Email VARCHAR(50) NOT NULL,

House VARCHAR(100) NOT NULL,

Street VARCHAR(100) NOT NULL,

City VARCHAR(100) NOT NULL,

Zip VARCHAR(10) NOT NULL,

) ;

SQL has no shorthand similar to WRAP, nor for UNWRAP. Example 5.15 here shows how unwrapping
can be done in longhand in SQL.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

132

Building on The Foundation

Example 5.15: Unwrapping in SQL (inverse of Example 5.14)

Letting CONTACT_INFO_WRAPPED denote the result of Example 5.14:
SELECT Name,

Address.House as House,

Address.Street as Street,

Address.City as City,

Address.Zip as Zip

FROM CONTACT_INFO_WRAPPED

Address.House in this example is equivalent to Tutorial D’s House FROM Address. The use
of a dot here is consistent with its use with range variables—recall that a range variable also denotes a
row, “ranging” over the rows of a table.

5.9 Table Comparison

The theory book includes the following definitions for relation comparisons in Tutorial D:

Let r1 and r2 be relations having the same heading. Then:
r1 ⊆ r2 is true if every tuple of r1 is also a tuple of r2, otherwise false.
r1 ⊇ r2 is equivalent to r2 ⊆ r1
r1 = r2 is equivalent to r1 ⊆ r2 AND r2 ⊆ r1

The question arises as to whether SQL tables can be similarly compared. SQL does not have direct
counterparts of ⊆ and ⊇. It does of course have =, but table expressions cannot be used as comparands.
However, as we have seen in Examples 5.6 et seq., the operator TABLE has been available since SQL:2003
to derive from a given table expression a value of a multiset type whose element type is a row type. In
other words, (SELECT * FROM t1) = (SELECT * FROM t2) is illegal but we can
obtain the required effect by writing TABLE (SELECT * FROM t1) = TABLE (SELECT
* FROM t2). So, to compare two tables, we have to use an operator named TABLE to “convert”
them from tables into multisets of rows!

To test for every row of t1 being also a row of t2 we could write, for example, NOT EXISTS

(SELECT * FROM t1 EXCEPT SELECT * FROM t2). In fact, SQL’s NOT EXISTS is
an exact counterpart of Tutorial D’s IS_EMPTY operator. However, note carefully that the case where
every row in t1 appears in t2 and every row of t2 appears in t1 does not guarantee that t1 and t2
are the same table. Row r might appear twice in t1 but only once in t2, for example.

You should now be able to write SQL counterparts for the theory book’s Examples 5.16 and 5.17, so I
leave those as exercises for the reader.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

133

Building on The Foundation

5.10 Other Operators on Tables and Rows

Section 5.10 in the theory book covers some of Tutorial D’s additional operators involving relations and
tuples. If only for the sake of completeness, we need to look for SQL counterparts of these.

Row Membership Test: We have already seen, in Section 5.2, SQL’s IN operator, for Tutorial D’s ∈

(spelled as IN in Rel).

Row Extraction

For Tutorial D’s TUPLE FROM r, SQL has row subqueries. These are just like scalar subqueries (see
Section 5.3) except that they may specify more than one column. For example, when appearing in a
suitable context, the expression

(SELECT * FROM COURSE WHERE CourseId = CID('C1'))

yields the row denoted by

CAST (ROW ('C1', 'Database') AS

 ROW (CourseId CID, Title VARCHAR(100)))

A row subquery whose table operand is empty yields a row in which every field is NULL.

Field Extraction: For extracting a field from a row, using dot qualification, see Example 5.15 in Section 5.8.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

SQL: A Comparative Survey

134

Building on The Foundation

Row Counterparts of Table Operators

SQL does not have counterparts of Tutorial D’s tuple rename, tuple projection, tuple extension, tuple
join and tuple compose. To obtain the same effects as these operators on row r, one has first to derive
the table t consisting of just r, then apply the SQL counterpart of the corresponding relational operator
on t, putting parentheses around the table expression so that, so long as the context is appropriate, it
becomes a row subquery.

For example, if r has fields named a, b, and c, we can simulate a tuple renaming of a tuple projection
to obtain the row consisting of just a and b, with b renamed to x, by (SELECT a, x FROM
VALUES (r) AS t(a, x, c)). The snag here is that the columns of a VALUES expression
have implementation-dependent names, so we cannot rely on the field names of r being propagated to
the table. We therefore have to specify the names in parentheses after the range variable name, t. At
least that gives us the slight short cut of renaming b as x on the fly, so to speak.

EXERCISES

1. Does SQL have a counterpart of r1 COMPOSE r2 when r1 and r2 have identical headings? If so, what
is it, in general? If not, why not?

2. Write an SQL expression that is equivalent to Example 5.9, repeated below, but does not use a SELECT
expression in a FROM clause.

SELECT CourseId, COALESCE(n, 0) AS n

FROM COURSE LEFT NATURAL JOIN

(SELECT CourseId, COUNT(*) AS n

FROM EXAM_MARK

GROUP BY CourseId) AS T

3. Write an SQL expression that is equivalent to the example below but does not use a SELECT expression
in a FROM clause.

SELECT CourseId, Title, AvgMark

FROM COURSE NATURAL JOIN

(SELECT CourseId, AVG(Mark) AS AvgMark

FROM EXAM_MARK

GROUP BY CourseId) AS T

4. In connection with Example 5.13, can you give an example where the same row might appear more
than once in the result if DISTINCT is omitted? If so, give it; otherwise explain.

http://bookboon.com/

Download free eBooks at bookboon.com

SQL: A Comparative Survey

135

Building on The Foundation

5. Using the suppliers-and-parts database shown in Figure 4.13, write SQL expressions for the following
queries:

a) Get the total number of parts supplied by supplier S1.

b) Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.

c) Get part numbers for parts supplied by all suppliers in London.

d) Get supplier numbers and names for suppliers who supply all the purple parts.

e) Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the same
set of parts each.

f) Write a truth-valued expression to determine whether all supplier names are unique in S.

g) Write a truth-valued expression to determine whether all part numbers appearing in SP also
appear in P.

6. Give SQL counterparts of the theory book’s Examples 5.16 and 5.17.

7. Tutorial D’s TUPLE operator takes a commalist of expressions, each one paired with an attribute
name. By contrast, SQL’s ROW operator takes a commalist of expressions without accompanying field
names. What are the advantages and disadvantages of SQL’s approach?

8. Distinguish between SQL’s table types and its multiset types whose element types are row types.

http://bookboon.com/

